Dynamical Modeling using Evolutionary Algorithms
نویسندگان
چکیده
منابع مشابه
Estimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملestimation of lpc coefficients using evolutionary algorithms
the vast use of linear prediction coefficients (lpc) in speech processing systems has intensified the importance of their accurate computation. this paper is concerned with computing lpc coefficients using evolutionary algorithms: genetic algorithm (ga), particle swarm optimization (pso), dif-ferential evolution (de) and particle swarm optimization with differentially perturbed velocity (pso-dv...
متن کاملsecuring interpretability of fuzzy models for modeling nonlinear mimo systems using a hybrid of evolutionary algorithms
in this study, a multi-objective genetic algorithm (moga) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear multi-input multi-output (mimo) systems. in the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. furthermore, se- curing low-level and high-level ...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symposium - International Astronomical Union
سال: 2004
ISSN: 0074-1809
DOI: 10.1017/s007418090018355x